

CAMPUS: _____ CENTURION_____

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	DC Machines	5/4/2020	5/8/2020
Week Number:	Learning	Objective /Learning Outcome	Teaching	Length of
	Learning Objective	e/ Learning Outcomes: TO understand dc	Resources/Aids	period
1	machines Speed	Control serie shunt, Traction — choice of	Board text book	1hour 10min
	motors and genera	tors. Series — parallel and speed control.	models	
	Br	idge and shunt Tansition.		

Week Days	Objectives	Activities		Teaching Methodology	Lesson Completed	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practi cal,etc)	Yes	No
Monday	DC Machines : Traction — choice of motors and generators. Series — parallel and speed control. Bridge and shunt Transition	The full-load current of a shunt motor is 120 A and the applied voltage is 400 V. The armature and shunt field resistances are 0,2 ohms and 200 ohms respectively, while the speed is 780	Read Exercise Workbook	Board text book models Workbook	yes	
		r/min. The torque developed by the				

		motor is reduced to 70% of the full-load value with an additional resistance of 1,2 ohms in series with the armature. Determine the speed of the motor.				
Tuesday	DC Machines : Traction — choice of motors and generators. Series — parallel and speed control. Bridge and shunt Transition	A 400 V, DC series motor takes a current of 30 A when running at 800 r/min. The resistance of the motor is 0,6 ohms. Assume the flux is proportional the current. Calculate the following: 1.2.1 The speed when the current is 50 A 1.2.2 The ratio of the TWO torques developed	Read Exercise Workbook	Board text book models Workbook	yes	

Wednesday	Calculation of torque and power. Load sharing. Equalizing bars aid cross—connection fields. Test — direct and indirect;	A 11 kW shunt-wound motor takes a current of 32 A from a 400 V mains at full-load. The armature has a resistance of 0,1 ohms and the field circuit resistance is 200 ohms. Calculate the following: 1.2.1 The combined iron and friction losses 1.2.2 The efficiency at full-load	Read Exercise Workbook	Board text book models Workbook	yes	
Week Days	Objectives	Activ	/ities	Teaching Methodology	Less Comp	son leted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practi cal,etc)	Yes	No
Thursday	Calculation of torque and power. Load sharing. Equalizing bars aid cross—connection fields. Test — direct and indirect;	Calculate the efficiencies of the generator and motor in a Hopkinson test if the following information is available: Terminal voltage of each machine = 500V Armature circuit resistance of each machine = 0,04 0hm Generator output current = 1000 A Input current from the bus bars = 400 A Motor field current = 24 A Generator field	Read Exercise Workbook	Board text book models Workbook	yes	

		current= 20 A Assume the two machines have equal iron and friction losses				
Friday	REVISION. Dynamic braking. Plugging control. Regenerative braking.	Do revision	Read Exercise Workbook	Board text book models Workbook	yes	

CAMPUS: _____ CENTURION_____

Lecture's Name	Subject	Торіс	Date From	Date To		
KOEN	ELECTRO	AC THEORY	5/11/2020	5/15/2020		
Week Number:	Learning	Teaching	Length of			
	Learning Objecti	ve/ Learning Outcomes: TO understand	Resources/Aids	period		
2	operation HARMO	NIC (PARALLEL) STAR/DELTA STAR (NO	Board text book	1hour 10min		
		NEUTRAL)	models			
ACTIVITIES						

Week Days	Objectives	Activities		Teaching	Les	son
				Methodology	Comp	leted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	Complex notations and phasors for mixed CIRCUITS	A three-phase, star- connected alternator with a line voltage of 380 V, supplies an unbalanced star- connected load with no neutral connection	Read Exercise Workbook	Board text book models Workbook	yes	
		The load consists of the following impedances:ZR 20 + j0Zy 15 – j0ZB 10 + j0 Take VRN as reference between phasor and				

		assume a phase rotation of R-Y-B. Calculate the following: 2.1 The potential difference between the star point of the load and the neutral point of the alternator 2.2 The potential difference across each phase of the load 2.3 The current in				
Tuesday	Three-phase, delta-	each line A 380 V, unbalanced, three-phase, delta- connected load consists of the following impedances: ZRY= 50 + j40 ohms ZYB = 30 - j20 ohms ZBR = 35 + j25 ohms Take VRY as reference phasor and assume a phase rotation of R-Y- B. Calculate the following: 2.1 The current in each phase of the load 2.2 The current in each line	Read Exercise Workbook	Board text book models Workbook	yes	

Wednesday	Four-wire, star- connected	A three-phase, four- wire, star-connected alternator, with a line voltage of 440 V, supplies a star- connected unbalanced load consisting of the following: ZRN = 5 + j10ZYN = 10 -	Read Exercise Workbook	Board text book models Workbook	yes	
		j12 ZBN = 15 + j10 Take VRN as reference phasor and assume a phase rotation of R-Y- B. Calculate the following: 2.1 The THREE line currents 2.2 The current in the neutral conductor 2.3 The power dissipated in each load				
Week Days	Objectives	2.4 The total power	vities	Teaching	Less	son
		What will the lecturer do?	What will students do?	Methodology (Demonstarion,Discussions,Practi cal,etc)	Comp Yes	leted No
Thursday	Complex waveforms. Breaking down of fundamental and harmonics	An alternating voltage represented by: V = 500 Sin 314t + 75 Sin 942t + 30° Sin 1 570t volt is applied to the terminals of a series circuit consisting of a 10 ohms resistor, a 0,02 henry inductor and a 100 microfarad	Read Exercise Workbook	Board text book models Workbook	yes	

		capacitor. Calculate the following: 2.1 The expression for the instantaneous value of the current supplied by the source 2.2 The RMS value of the current 2.3 The power factor of the circuit 2.4 The energy				
		during 5 milliseconds				
Friday	Complex waveforms. Breaking down of fundamental and harmonics	Do revision An EMF represented by e = 170sin3l4t-60° + 120sin(942t + 30°) volt is applied across a resistor of 10 ohms in parallel with an inductor of 0,02 henry. Calculate the following: 2.1 The RMS value of the current 2.2 The power absorbed by the circuit 2.3 The power factor of the circuit 2.4 The energy dissipated in the circuit during 5 milliseconds	Read Exercise Workbook	Board text book models Workbook	yes	

KOEN CJA_

Lecturer signature

_MATHOBELA_J_

CAMPUS: _____ CENTURION_____

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	TRANSFORMERS	5/18/2020	5/22/2020
Week Number:	Learning : TO under	g Objective /Learning Outcome rstand operation of transformers	Teaching Resources/Aids	Length of period
3			Board text book models	1hour 10min

Week Days	Objectives	Activities		Teaching Methodology	Lesson Completed	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practi cal,etc)	Yes	No
Monday	Transformers : Calculations on load using equivalent circuit	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V, single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum efficiency is 95,6 % at	Read Exercise Workbook	Board text book models Workbook	yes	

		a power factor of 0,8				
		lagging.				
		Calculate the				
		following:				
		3.2.1 The iron losses				
		3.2.2 The full-load				
		conner losses				
		3.2.3 The full-load				
		efficiency at 0.8 power				
		factor lagging				
		3 2 4 The full-load				
		voltage regulation at				
		unity power factor				
Tupeday	Transformers	The impedance that	Pead	Board toxt book	VAS	
Tuesday	Calculations on load	refers to the primary of	Evercise	models Workbook	yes	
	using equivalent circuit	$\sim 250 \text{ k/A} = 6.000/500$	Workbook			
	using equivalent circuit	$V_{\rm single_phase} = 50 \text{Hz}$	WOI RDOOK			
		transformer is (0.5 ±				
		i4) obmo The power				
		factor is 0.8 lagging				
		Calculate:				
		2.2.1 The turne ratio				
		3.2.1 The turns fallo				
		3.2.2 The percentage				
		3.2.3 The percentage				
		copper loss				
		3.2.5 The power factor				
		at which maximum				
		regulation occurs				
		3.2.6 The voltage to				
		be applied to the				
		primary to circulate				
		full-load current in				
		the secondary circuit				
		on short circuit				
Wednesday	Transformers	A 12 kVA, 2 000/400	Read	Board text book	yes	

	Calculations on load	V, 50 Hz, single-phase	Exercise	models Workbook		
	using equivalent circuit	transformer gives the	Workbook			
		following test results:				
		Open-circuit test: 400				
		V at normal frequency				
		applied to the 400 V				
		winding. The power				
		input is 120 W.				
		Short-circuit test: 25 V				
		at normal frequency				
		applied to the 400 V				
		winding and full-load				
		current circulating in				
		the 2 000 V winding.				
		The power input is				
		150 W.				
		Calculate the				
		following:				
		3.2.1 The resistance,				
		reactance and				
		impedance referred to				
		the secondary side				
		3.2.2The percentage				
		regulation at full load				
		and 0,8 power factor				
		lagging				
		3.2.3The efficiency at				
		full load and 0,8 power				
		factor lagging				
West Dave	Obiestives			Teeshing		
week Days	Objectives	ACTIV	lities	Teaching	Less	
		What will the lecturer	What will students do?	(Demonstarion, Discussions, Practi	Comp	Na
		do?	what will students uo?	cal,etc)	res	ON
Thursday	Tests — back to back:	A 500 kVA, single-	Read	Board text book	ves	
i i i u ouu y	delta — delta: Scott	phase transformer has	Exercise	models Workhook	,	

connection; economics;	an iron loss of 2,9 kW.	Workbook		
harmonics; zig—zag	PRIMARY			
connection; tertiary	SECONDARY			
windings. Regulation	6600V			
	400V			
	420 milliohms			
	1,1 milliohms			
	For a load power factor			
	of 0,8 lagging,			
	calculate the following:			
	3.2.1 Full load			
	efficiency			
	3.2.2 Efficiency at half-			
	load			
	3.2.3 Maximum			
	efficiency			
	3.2.4 Output at			
	maximum efficiency			

Friday	Tests — back to back; delta — delta; Scott connection; economics; harmonics; zig—zag connection; tertiary windings. Regulation	A 165 kVA single- phase transformer has a voltage ratio of 3 300/660 V. The primary short circuit voltage is 358,5 V and the short circuit power is 3,875 kW. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the following: 3.2.1 The equivalent resistance and reactance referred to the primary 3.2.2 The percentage full load voltage regulation 3.2.3 The efficiency at half load 3.2.4 The maximum	Read Exercise Workbook	Board text book models Workbook	yes	
		half load 3.2.4 The maximum efficiency				

CAMPUS: _____ CENTURION_

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	ALTERNATORS	5/25/2020	5/29/2020
Week Number:	Learning TO understand	g Objective /Learning Outcome operation ALTERERNATORS Synchronous	Teaching Resources/Aids	Length of period
4		motor Induction motor	Board text book models	1hour 10min

Week Days	Objectives	Activ	ities	Teaching	Lesson	
				Methodology	Comp	leted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	AC Machines : Alternators	AC Machines : Alternators The armature of a 10 pole, star-connected, three-phase alternator with a flux per pole of 0,04 wb has 150 slots. There are 4 conductors in each slot and the coil pitch is 0,75 of the pole pitch. If the	Read Exercise Workbook	Board text book models Workbook	yes	

		alternator runs at a speed of 600 r/min and the form factor is 1,13, calculate the open-circuit line voltage.				
Tuesday	Alternators	A 750 kVA, 3 000 V, 50 Hz three-phase, star- connected alternator has an armature resistance of 0,3 ohms per phase. A certain field current produces a short-circuit current of 180 A and an open circuit terminal EMF of 1 500 V (line value). Calculate: (i) The synchronous impedance (ii) The Synchronous reactance (iii) The full load percentage voltage regulation at a power factor of 0,8 lagging	Read Exercise Workbook	Board text book models Workbook	yes	
Wednesday	Calculations of regulation and phasor diagrams; varying excitation; V— curves. Synchronous motor: back emf; back emf; armature reaction; load angle;	Calculations of regulation and phasor diagrams; varying excitation; V— curves. Synchronous motor: back emf; back emf; armature reaction; load angle;	Read Exercise Workbook	Board text book models Workbook	yes	

		A 300 kVA, 2,2 kV, four pole. 50 Hz Star- connected synchronous motor has a percentage synchronous impedance of (5 + j 45) per cent. The machine is fully loaded at 0,8 power factor leading. Calculate: The resistance				
		The reactance				
		machine is excited				
		The load angle in mechanical degrees				
Week Days	Objectives	Activ	ities	Teaching	Less	son
				(Demonstarion Discussions Practic	Comp	leted
		What will the lecturer	what will students do?	al etc)	Yes	NO
		do?		al,etc)		

	 ill) ohm per phase. Calculate the following: 6.2.1 The torque developed at a full- load slip of 5% 6.2.2 The full-load power output if the friction and wind losses are 880W 6.2.3 The speed at maximum torque 		

Friday	Draw the circle diagram	Draw the circle	Read	Board text book	ves	
	j	diagram of a 66.12	Exercise	models Workbook		
		kW, 380 V, 50 Hz, 6	Workbook			
		pole, star-connected,				
		three- phase induction				
		motor, given the				
		following additional				
		data:				
		No-load test: 20 A				
		380 V 2 000 W				
		Locked rotor test 115				
		A 150 V 0.23 power				
		factor				
		The stator resistance.				
		per phase, is 0, 08				
		ohms.				
		Use scale 1 cm 12.5 A				
		Determine the				
		following from the				
		circle diagram at full-				
		load:				
		6.1 The power factor				
		6.2 The line current				
		6.3 The percentage				
		slip				
		6 4 The efficiency				
		6.5 The input power				
		6.6 The torque in				
		synchronous watts				
		-				

CAMPUS: _____ CENTURION_____

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	POWER FACTOR	6/1/2020	6/5/2020
Week Number:	Learning Objective / F	Learning Outcome: TO understand POWER	Teaching Resources/Aids	Length of period
5			Board text book models	1hour 10min

Week Days	Objectives	Acti	vities	Teaching Methodology	Lesson Complete	son leted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	Generation and supply of	A number of	Read	Board text book	yes	
_	ac : Power—factor	induction motors	Exercise	models Workbook	_	
	correction — causes of	operate in parallel at	Workbook			
	low power factor;	a combined power				
	reasons for	factor of 0,7 lagging				
	improvement; capacitors	and an input of 500				
	and synchronous	kW. A synchronous				
	motors;	motor having an				
	KVA and KVA reactive;	input of 100 kW and				
	Calculations and phasor	at a power factor of				
	diagrams.	0,6 leading, is				

		connected in parallel with the induction motors. Calculate the following: 7.2.1 The total kVA			
		7.2.2 The total power factor			
Tuesday	Generation and supply of	The power factor of a	Read	Board text book	ves
idebudy	ac : Power—factor	250 kW, three-phase,	Exercise	models Workbook	yes
	correction — causes of	balanced load must	Workbook		
	low power factor;	be improved from 0,8			
	reasons for	to 0,9 lagging, by			
	improvement; capacitors	connecting loss-free			
	and synchronous	capacitors in star			
	motors;	across the supply of a			
	KVA and KVA reactive;	2 200 V, 50 Hz			
	Calculations and phasor	supply. There are 3			
	diagrams.	capacitors in series			
		per phase.			
		following:			
		6.2.1 The total kV/A			
		rating of the			
		capacitors			
		6 2.2 The capacitance			
		of one capacitor.			
Wednesday	Generation and supply of	The voltage supply to	Read	Board text book	yes
_	ac : Power—factor	a consumer is 400 V,	Exercise	models Workbook	
	correction — causes of	50 Hz, three-phase.	Workbook		
	low power factor;	The			
	reasons for	consumer has a			
	improvement; capacitors	lighting load of 2 kW			
	and synchronous	at unity power factor			
	motors;	and a 30 kW			
	KVA and KVA reactive;	induction motor		1	

	Calculations and phasor	operating at a power				
	diagrams.	factor of 0,8 lagging.				
		The efficiency of the				
		motor is 85%.				
		Calculate the				
		following:				
		7.2.1 The total kVA of				
		the load				
		7.2.2 The power				
		factor of the load				
		7.2.3 The value of				
		the line current to a				
		delta-connected				
		capacitor bank				
		which, when				
		connected in parallel				
		with the load, will				
		limit the current				
		taken from the mains				
		to 60 A				
Week Days	Objectives	Acti	vities	Teaching	Less	son
				Methodology	Comp	leted
		What will the lecturer	What will students do?	(Demonstarion, Discussions, Practic	Yes	No
		do?		0.,000,		
Thursday		A three-phase, 3 kV,	Read	Board text book	ves	
		50 Hz induction	Exercise	models Workbook		
		motor develops 500	Workbook			
		kW at 0,78 power				
		factor lagging with an				
		efficiency of 92%. A				
		delta-connected bank				
		of capacitors is				
		connected in parallel				
1					1	1
		with the motor to				
		improve the power				
		improve the power factor to 0,95				

	of the bank consists of 5 identical capacitors connected in parallel. Determine the capacitance of each capacitor.		

Friday	Two 2 200 V star-	Two 2 200 V star-	Read	Board text book	yes	
	connected alternators	connected alternators	Exercise	models Workbook	-	
	operating in parallel	operating in parallel,	Workbook			
		supply the following				
		loads:				
		50 kW at unity power				
		factor				
		400 kW at 0,9 power				
		factor lagging				
		350 kW at 0,8 power				
		factor lagging				
		100 kW at 0,8 power				
		factor leading				
		One machine supplies				
		a current of 190 A at				
		a power factor of 0,8				
		lagging.				
		Calculate the				
		following:				
		6.1 The armature				
		current of the second				
		machine				
		6.2 The power factor				
		of the second				
		machine				
		6.3 The output of the				
		second machine in				
		kilowatts				

CAMPUS: _____ CENTURION_

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	TRANSMISSION LINES	6/8/2020	6/12/2020
Week Number: 6	Learning : TO underst	g Objective /Learning Outcome and operation of transmission lines	Teaching Resources/Aids Board text book models	Length of period 1hour 10min

Week Days	Objectives	Activities		Teaching Methodology	Lesson Completed	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	Transformers : Calculations on load using equivalent circuit Measure instruments : Use, construction and operation of — wattmeters; watt hours meter; power factor meter; frequency meter.	Calculate by means of the T-method, the sending end voltage, current and power factor for a long transmission line supplying a load of 40 MVA, three-phase at a power factor of 0, 8 lagging and 110 kV, 50 Hz Each conductor	Read Exercise Workbook	Board text book models Workbook	yes	

		has a resistance of 30 ohms, an inductance of 0, 25 henry and a capacitance to neutral of 2 microfarads. IMPORTANT: Draw the T-method circuit diagram.				
Tuesday	Transformers Calculations on load using equivalent circuit Measure instruments : Use, construction and operation of — wattmeters; watt hours meter; power factor meter; frequency meter.	Apply the π method to calculate the sending end voltage, current and power factor of a 150 km transmission line. The line delivers a three-phase load of 15 MW at a power factor of 0,8 lagging and a line voltage of 90 kV, 50 Hz. Each conductor has a resistance of 0,285 ohms/km an inductance of 1,845 mH/km and a capacitance of 0,00863 uF/km to neutral. Note: Draw the π method circuit diagram.	Read Exercise Workbook	Board text book models Workbook	yes	

Wednesday	Transformers Calculations on load using equivalent circuit Diagrams .diagrams connections. Cable fault's. Murray loop tests — ground fault, short— circuit fault.	A three-phase overhead transmission line is 100 km long. The phase values of resistance, inductance and capacitance per km are 0, 15 ohm, 1,2 mH and 0,0087 μ F respectively. The line supplies a balanced load of 80 MW at a power factor of 0, 8 lagging and at a line voltage of 132 kV at 50Hz. Use the π method and determine the following: 1) The sending end voltage 2)The sending end current 3) The power factor on the sending end	Read Exercise Workbook	Board text book models Workbook	yes	
Week Days	Objectives	Activ	ities	Teaching Methodology	Less	son leted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Thursday	Cable fault's. Murray loop tests — ground fault, short—circuit fault.	Use the T-method and calculate the following of a three-phase transmission line: 1 The sending current 2 The sending voltage 3 The power factor at the sending end 4 The efficiency of the line	Read Exercise Workbook	Board text book models Workbook	yes	

		Each conductor of a 150 km transmission line has a resistance of 0, 3 ohm per km, an inductance of 1,95 millihenry per km and a capacitance of 0,0097 microfarad per km to neutral. The line delivers a three-phase load of 25 MW at a power factor of 0, 8 lagging and a line voltage of 110 kV, 50 Hz. NOTE: Draw the T-				
		NOTE: Draw the T- method circuit diagram				
Friday	Diagrams .diagrams connections. Cable fault's. Murray loop tests — ground fault, short— circuit fault.	REVISION ON TRANSMISSION LINES	Read Exercise Workbook	Board text book models Workbook	yes	

CAMPUS: _____ CENTURION_

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	OVERHEAD LINE PROTECTION	6/15/2020	6/19/2020
Week Number:	Learning TO understand of :	J Objective /Learning Outcome Deration of OVERHEAD LINE PROTECTION	Teaching Resources/Aids	Length of period
7			Board text book models	1hour 10min

Week Days	Objectives	Activities		Teaching Methodology	Lesson Completed	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	Transformers :	Transformers :	Read	Board text book	yes	
	Calculations on load	Calculations on load	Exercise	models Workbook		
	using equivalent circuit	using equivalent circuit	Workbook			
	Switchgear and	A 400 kVA, 6 600/500 V,				
	protective devices :	single-phase				
	Induction disc relays.	transformer has its				
	Current and voltage	maximum efficiency at				
	break capacities of	0,75 of full-load current.				
	contactors. Re- verse	The maximum efficiency				
	phase relay. High	is 95,6 % at a power				
	voltage and current	factor of 0,8 lagging.				
	circuit breakers.	Calculate the following:				

		3.2.1 The iron losses			
		3.2.2 The full-load			
		copper losses			
		3.2.3 The full-load			
		efficiency at 0,8 power			
		factor lagging			
		3.2.4 The full-load			
		voltage regulation at			
		unity power factor			
Tuesday	Transformers	The impedance that	Read	Board text book	yes
	Calculations on load	refers to the primary of	Exercise	models Workbook	
	using equivalent circuit	a 250 kVA, 6 000/500 V,	Workbook		
	Switchgear and	single- phase, 50 Hz			
	protective devices :	transformer is $(0,5 + j4)$			
	Induction disc relays.	ohms. The power factor			
	Current and voltage	is 0,8 lagging. Calculate:			
	break capacities of	3.2.1 The turns ratio			
	contactors. Re— verse	3.2.2 The percentage			
	phase relay. High	resistance			
	voltage and current	3.2.3 The percentage			
	circuit breakers.	reactance			
		3.2.4 The full-load			
		copper loss			
		3.2.5 The power factor			
		at which maximum			
		regulation occurs			
		3.2.6 The voltage to be			
		applied to the primary			
		to circulate full-load			
		current in the secondary			
		circuit on short circuit			
Wednesday	Transformers	A 12 kVA, 2 000/400 V,	Read	Board text book	yes
	Calculations on load	50 Hz, single-phase	Exercise	models Workbook	
	using equivalent circuit	transformer gives the	Workbook		
	Switchgear and	following test results:			
	protective devices :	Open-circuit test: 400 V			
	Induction disc relays.	at normal frequency			
	Current and voltage	applied to the 400 V			

	break capacities of	winding. The power				
	contactors. Re- verse	input is 120 W.				
	phase relay. High	Short-circuit test: 25 V				
	voltage and current	at normal frequency				
	circuit breakers.	applied to the 400 V				
		winding and full-load				
		current circulating in the				
		2 000 V winding. The				
		power input is 150 W.				
		Calculate the following:				
		3.2.1 The resistance,				
		reactance and				
		impedance referred to				
		the secondary side				
		3.2.2The percentage				
		regulation at full load				
		and 0,8 power factor				
		lagging				
		3.2.3The efficiency at				
		full load and 0,8 power				
		factor lagging				
Week Days	Objectives	Activi	ties	Teaching	Less	son
				Methodology	Comp	leted
		What will the lecturer	What will students do?	(Demonstarion, Discussions, Practic al, etc)	Yes	No
		00?				
Thursday	Tests — back to back;	A 500 kVA, single-phase	Read	Board text book	ves	
	delta — delta; Scott	transformer has an iron	Exercise	models Workbook		
	connection; economics;	loss of 2,9 kW.	Workbook			
	harmonics; zig—zag	PRIMARY				
	connection; tertiary	SECONDARY				
	windings. Regulation	6600V				
	Fault calculations to	400V				
	determine switchgear	420 milliohms				
	fault capacities. KVA	1,1 milliohms				
	rating of reactors to	For a load power factor				
	reduce fault current⊥	of 0.8 langing calculate				
1		or o,o lugging, culculate				

		 3.2.1 Full load efficiency 3.2.2 Efficiency at half-load 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency 				
Friday Tests — ba delta — del connection harmonics; connection windings. I Fault calcu determine fault capac rating of re reduce fau levels.	ick to back; Ita; Scott a; economics; cig—zag b; tertiary Regulation alations to switchgear cities. KVA eactors to It current+	A 165 kVA single-phase transformer has a voltage ratio of 3 300/660 V. The primary short circuit voltage is 358,5 V and the short circuit power is 3,875 kW. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the following: 3.2.1 The equivalent resistance and reactance referred to the primary 3.2.2 The percentage full load voltage regulation 3.2.3 The efficiency at half load 3.2.4 The maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes	

CAMPUS: _____ CENTURION_____

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	CABLE FAULTS	6/22/2020	6/26/2020
Week Number:	Learning	J Objective /Learning Outcome	Teaching	Length of
	: TO understand	operation of cable faults, Static control :	Resources/Aids	period
8	Analogue to digital o	conversion. Digital to analogue conversion.	Board text book	1hour 10min
			models	

Week Days	Objectives	Activ	ities	Teaching Methodology	Lesson Completed	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	Static control : Analogue to digital conversion. Digital to analogue conversion.	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V, single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum efficiency is 95,6 % at	Read Exercise Workbook	Board text book models Workbook	yes	

		a power factor of 0,8 lagging. Calculate the following: 3.2.1 The iron losses 3.2.2 The full-load copper losses 3.2.3 The full-load efficiency at 0.8 power				
		factor lagging				
		3.2.4 The full-load				
		voltage regulation at				
		unity power factor				
Tuesday		The impedance that	Read	Board text book	yes	
	Static control : Analogue	refers to the primary of	Exercise	models Workbook		
	to digital conversion.	a 250 kVA, 6 000/500	Workbook			
	Digital to analogue	V, single- phase, 50 Hz				
	conversion.	transformer is $(0,5 + 1)$				
		14) onms. The power				
		factor is 0,8 lagging.				
		2 2 1 The turne ratio				
		3.2.1 The turns fauld				
		resistance				
		3 2 3 The percentage				
		reactance				
		3 2 4 The full-load				
		conner loss				
		3.2.5 The power factor				
		at which maximum				
		regulation occurs				
		3.2.6 The voltage to				
		be applied to the				
		primary to circulate				
		full-load current in				
		the secondary circuit				
		on short circuit				

Wednesday	Static control : Analogue	A 12 kVA, 2 000/400	Read	Board text book	yes	
-	to digital conversion.	V, 50 Hz, single-phase	Exercise	models Workbook	-	
	Digital to analogue	transformer gives the	Workbook		ľ	
	conversion.	following test results:			ľ	
		Open-circuit test: 400			ľ	
		V at normal frequency			ľ	
		applied to the 400 V			ľ	
		winding. The power				
		input is 120 W.			ľ	
		Short-circuit test: 25 V			ľ	
		at normal frequency				
		applied to the 400 V				
		winding and full-load				
		current circulating in				
		the 2 000 V winding.				
		The power input is				
		150 W.			ľ	
		Calculate the				
		following:				
		3.2.1 The resistance,				
		reactance and				
		impedance referred to				
		the secondary side				
		3.2.2The percentage				
		regulation at full load			ľ	
		and 0,8 power factor				
		lagging				
		3.2.3The efficiency at				
		full load and 0,8 power				
		factor lagging				

Week Days	Objectives	Activ	ities	Teaching Methodology	actic Eesso Complet Yes yes	esson SSON	
		What will the lecturer	What will students do?	(Demonstarion, Discussions, Practic	Comp		
		do?	What will students do:	al,etc)	165	NO	
Thursday	RC network phase control. Phase control of armature voltage of dc motors.	A 500 kVA, single- phase transformer has an iron loss of 2,9 kW. PRIMARY SECONDARY 6600V 400V 420 milliohms 1,1 milliohms For a load power factor of 0,8 lagging, calculate the following: 3.2.1 Full load efficiency 3.2.2 Efficiency at half- load 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes		
Friday	RC network phase control. Phase control of armature voltage of dc motors.	A 165 kVA single- phase transformer has a voltage ratio of 3 300/660 V. The primary short circuit voltage is 358,5 V and the short circuit power is 3,875 kW. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the	Read Exercise Workbook	Board text book models Workbook	yes		

follow 3.2.1 resista reacta the pr 3.2.2 full lo regula 3.2.3 half lo 3.2.4 efficie	ing: The equivalent ince and nce referred to imary The percentage ad voltage tion The efficiency at ad The maximum ncy		

CAMPUS: _____ CENTURION_

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	CABLE FAULTS	6/29/2020	7/3/2020
Week Number:	Learning	J Objective /Learning Outcome	Teaching	Length of
	: TO understand	operation of cable faults, Static control :	Resources/Aids	period
9	Analogue to digital of	conversion. Digital to analogue conversion.	Board text book	1hour 10min
			models	

Week Days	s Objectives Activities		Teaching Methodology	Lesson Completed		
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	Static control : Analogue to digital conversion. Digital to analogue conversion.	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V, single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum	Read Exercise Workbook	Board text book models Workbook	yes	

		efficiency is 95,6 % at				
		a power factor of 0,8				
		agging.				
		3.2.1 The Iron losses				
		3.2.2 The full-load				
		copper losses				
		3.2.3 The full-load				
		efficiency at 0,8 power				
		factor lagging				
		3.2.4 The full-load				
		voltage regulation at				
		unity power factor				
Tuesday		The impedance that	Read	Board text book	yes	
	Static control : Analogue	refers to the primary of	Exercise	models Workbook		
	to digital conversion.	a 250 kVA, 6 000/500	Workbook			
	Digital to analogue	V, single- phase, 50 Hz				
	conversion.	transformer is (0,5 +				
		j4) ohms. The power				
		factor is 0,8 lagging.				
		Calculate:				
		3.2.1 The turns ratio				
		3.2.2 The percentage				
		resistance				
		3.2.3 The percentage				
		reactance				
		3.2.4 The full-load				
		copper loss				
		3.2.5 The power factor				
		at which maximum				
		regulation occurs				
		3.2.6 The voltage to				
		be applied to the				
		primary to circulate				
		full-load current in				
		the secondary circuit				
		on short circuit				

Wednesday	Static control : Analogue	A 12 kVA, 2 000/400	Read	Board text book	yes	
-	to digital conversion.	V, 50 Hz, single-phase	Exercise	models Workbook	-	
	Digital to analogue	transformer gives the	Workbook			
	conversion.	following test results:				
		Open-circuit test: 400				
		V at normal frequency				
		applied to the 400 V				
		winding. The power				
		input is 120 W.				
		Short-circuit test: 25 V				
		at normal frequency				
		applied to the 400 V				
		winding and full-load				
		current circulating in				
		the 2 000 V winding.				
		The power input is				
		150 W.				
		Calculate the				
		following:				
		3.2.1 The resistance,				
		reactance and				
		impedance referred to				
		the secondary side				
		3.2.2The percentage				
		regulation at full load				
		and 0,8 power factor				
		lagging				
		3.2.3The efficiency at				
		full load and 0,8 power				
		factor lagging				

Week Days	Objectives	Activ	Activities Teaching		Lesson	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Thursday	RC network phase control. Phase control of armature voltage of dc motors.	A 500 kVA, single- phase transformer has an iron loss of 2,9 kW. PRIMARY SECONDARY 6600V 400V 420 milliohms 1,1 milliohms For a load power factor of 0,8 lagging, calculate the following: 3.2.1 Full load efficiency 3.2.2 Efficiency at half- load 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes	
Friday	RC network phase control. Phase control of armature voltage of dc motors.	A 165 kVA single- phase transformer has a voltage ratio of 3 300/660 V. The primary short circuit voltage is 358,5 V and the short circuit power is 3,875 kW. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the	Read Exercise Workbook	Board text book models Workbook	yes	

	following: 3.2.1 The equivalent resistance and reactance referred to the primary 3.2.2 The percentage full load voltage regulation 3.2.3 The efficiency at half load 3.2.4 The maximum efficiency		

CAMPUS: _____ CENTURION

Lecture's Name	Subject	Торіс	Date From	Date To
KOEN	ELECTRO	CABLE FAULTS	7/6/2020	7/10/2020
Week Number:	Learning	g Objective /Learning Outcome	Teaching	Length of
	: TO understand	operation of cable faults, Static control :	Resources/Aids	period
10	Analogue to digital of	conversion. Digital to analogue conversion.	Board text book	1hour 10min
			models	

Week Days	Objectives	Activities		Teaching	Less	son
				Methodology	Comp	leted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Monday	Static control : Analogue to digital conversion. Digital to analogue conversion.	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V, single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum efficiency is 95,6 % at	Read Exercise Workbook	Board text book models Workbook	yes	

		a power factor of 0,8 lagging.				
		Calculate the				
		following:				
		3.2.1 The iron losses				
		3.2.2 The full-load				
		copper losses				
		3.2.3 The full-load				
		efficiency at 0,8 power				
		factor lagging				
		3.2.4 The full-load				
		voltage regulation at				
		unity power factor				
Tuesday		The impedance that	Read	Board text book	yes	
	Static control : Analogue	refers to the primary of	Exercise	models Workbook		
	to digital conversion.	a 250 kVA, 6 000/500	Workbook			
	Digital to analogue	V, single- phase, 50 Hz				
	conversion.	transformer is (0,5 +				
		j4) ohms. The power				
		factor is 0,8 lagging.				
		Calculate:				
		3.2.1 The turns ratio				
		3.2.2 The percentage				
		resistance				
		3.2.3 The percentage				
		reactance				
		3.2.4 The full-load				
		copper loss				
		3.2.5 The power factor				
		at which maximum				
		regulation occurs				
		3.2.6 The voltage to				
		be applied to the				
		primary to circulate				
		full-load current in				
		the secondary circuit				
		on short circuit				

Wednesday	Static control : Analogue	A 12 kVA, 2 000/400	Read	Board text book	yes	
-	to digital conversion.	V, 50 Hz, single-phase	Exercise	models Workbook	-	
	Digital to analogue	transformer gives the	Workbook			
	conversion.	following test results:				
		Open-circuit test: 400				
		V at normal frequency				
		applied to the 400 V				
		winding. The power				
		input is 120 W.				
		Short-circuit test: 25 V				
		at normal frequency				
		applied to the 400 V				
		winding and full-load				
		current circulating in				
		the 2 000 V winding.				
		The power input is				
		150 W.				
		Calculate the				
		following:				
		3.2.1 The resistance,				
		reactance and				
		impedance referred to				
		the secondary side				
		3.2.2The percentage				
		regulation at full load				
		and 0,8 power factor				
		lagging				
		3.2.3The efficiency at				
		full load and 0,8 power				
		factor lagging				

Week Days	Objectives	Activities		Teaching	Lesson	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Thursday	RC network phase control. Phase control of armature voltage of dc motors.	A 500 kVA, single- phase transformer has an iron loss of 2,9 kW. PRIMARY SECONDARY 6600V 400V 420 milliohms 1,1 milliohms For a load power factor of 0,8 lagging, calculate the following: 3.2.1 Full load efficiency 3.2.2 Efficiency at half- load 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes	
Friday	RC network phase control. Phase control of armature voltage of dc motors.	A 165 kVA single- phase transformer has a voltage ratio of 3 300/660 V. The primary short circuit voltage is 358,5 V and the short circuit power is 3,875 kW. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the	Read Exercise Workbook	Board text book models Workbook	yes	

follow 3.2.1 resista reacta the pr 3.2.2 full lo regula 3.2.3 half lo 3.2.4 efficie	ing: The equivalent ance and nce referred to imary The percentage ad voltage ition The efficiency at ad The maximum ncy		