higher education
\& training
Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	DC Machines	$5 / 4 / 2020$	$5 / 8 / 2020$
Week Number:	Learning Objective/ Learning Outcomes: TO understand dc machines Speed Control serie shunt, Traction - choice of motors and generators. Series - parallel and speed control. Bridge and shunt Tansition.	Teaching Resources/Aids Board text book models	Length of period 1 1hour 10min	

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practi cal,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Monday	DC Machines : Traction - choice of motors and generators. Series parallel and speed control. Bridge and shunt Transition	The full-load current of a shunt motor is 120 A and the applied voltage is 400 V . The armature and shunt field resistances are 0,2 ohms and 200 ohms respectively, while the speed is 780 $\mathrm{r} / \mathrm{min}$. The torque developed by the	Read Exercise Workbook	Board text book models Workbook	yes	

Wednesday	Calculation of torque and power. Load sharing. Equalizing bars aid cross-connection fields. Test - direct and indirect;	A 11 kW shunt-wound motor takes a current of 32 A from a 400 V mains at full-load. The armature has a resistance of 0,1 ohms and the field circuit resistance is 200 ohms. Calculate the following: 1.2.1 The combined iron and friction losses 1.2.2 The efficiency at full-load	Read Exercise Workbook	Board text book models Workbook	yes	
Week Days	Objectives	Acti	ities	Teaching Methodology	$\begin{array}{r} \mathrm{Le} \\ \mathrm{Com} \end{array}$	ted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practi cal, etc)	Yes	No
Thursday	Calculation of torque and power. Load sharing. Equalizing bars aid cross-connection fields. Test - direct and indirect;	Calculate the efficiencies of the generator and motor in a Hopkinson test if the following information is available: Terminal voltage of each machine $=500 \mathrm{~V}$ Armature circuit resistance of each machine $=0,040 \mathrm{hm}$ Generator output current $=1000 \mathrm{~A}$ Input current from the bus bars $=400 \mathrm{~A}$ Motor field current $=$ 24 A Generator field	Read Exercise Workbook	Board text book models Workbook	yes	

		current=20 A Assume the two machines have equal iron and friction losses			
Friday	REVISION. Dynamic braking. Plugging control. Regenerative braking.	Do revision	Read Exercise Workbook	Board text book models Workbook	yes

Lecturer Signature

Senior/HoD Signature

higher education
\& training
Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	AC THEORY	5/11/2020	5/15/2020
Week Number: 2	Learning Objective /Learning Outcome Learning Objective/ Learning Outcomes: TO understand operation HARMONIC (PARALLEL) STAR/DELTA STAR (NO NEUTRAL)		Teaching Resources/Aids Board text book models	Length of period 1hour 10min

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Monday	Complex notations and phasors for mixed CIRCUITS	A three-phase, starconnected alternator with a line voltage of 380 V , supplies an unbalanced starconnected load with no neutral connection. The load consists of the following impedances:ZR $20+$ jOZy 15 - jOZB 10 + j0 Take VRN as reference between phasor and	Read Exercise Workbook	Board text book models Workbook	yes	

Wednesday	Four-wire, starconnected	A three-phase, fourwire, star-connected alternator, with a line voltage of 440 V , supplies a starconnected unbalanced load consisting of the following: $\begin{aligned} & \text { ZRN }=5+j 10 Z Y N=10- \\ & \text { j12 } \\ & \text { ZBN }=15+j 10 \end{aligned}$ Take VRN as reference phasor and assume a phase rotation of $R-Y$ B. Calculate the following: 2.1 The THREE line currents 2.2 The current in the neutral conductor 2.3 The power dissipated in each load 2.4 The total power	Read Exercise Workbook	Board text book models Workbook	yes	
Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practi cal,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Thursday	Complex waveforms. Breaking down of fundamental and harmonics	An alternating voltage represented by: V = $500 \operatorname{Sin} 314 t+75 \operatorname{Sin}$ $942 \mathrm{t}+30^{\circ} \operatorname{Sin} 1570 \mathrm{t}$ volt is applied to the terminals of a series circuit consisting of a 10 ohms resistor, a 0,02 henry inductor and a 100 microfarad	Read Exercise Workbook	Board text book models Workbook	yes	

		capacitor. Calculate the following: 2.1 The expression for the instantaneous value of the current supplied by the source 2.2 The RMS value of the current 2.3 The power factor of the circuit 2.4 The energy dissipated in the circuit during 5 milliseconds				
Friday	Complex waveforms. Breaking down of fundamental and harmonics	Do revision An EMF represented by e = I70sin314t-60 + I20sin(942t + 30 ${ }^{\circ}$) volt is applied across a resistor of 10 ohms in parallel with an inductor of 0,02 henry. Calculate the following: 2.1 The RMS value of the current 2.2 The power absorbed by the circuit 2.3 The power factor of the circuit 2.4 The energy dissipated in the circuit during 5 milliseconds	Read Exercise Workbook	Board text book models Workbook	yes	

higher education
\& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS:

\qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	TRANSFORMERS	$5 / 18 / 2020$	$5 / 22 / 2020$
Week Number:	Learning Objective /Learning Outcome		Teaching Resources/Aids Board text book models	Length of period 1 hour 10 min
3	$:$ TO understand operation of transformers			

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practi cal,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Monday	Transformers : Calculations on load using equivalent circuit	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V , single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum efficiency is $95,6 \%$ at	Read Exercise Workbook	Board text book models Workbook	yes	

		a power factor of 0,8 lagging. Calculate the following: 3.2.1 The iron losses 3.2.2 The full-load copper losses 3.2.3 The full-load efficiency at 0,8 power factor lagging 3.2.4 The full-load voltage regulation at unity power factor			
Tuesday	Transformers Calculations on load using equivalent circuit	The impedance that refers to the primary of a 250 kVA, 6 000/500 V , single- phase, 50 Hz transformer is ($0,5+$ j4) ohms. The power factor is 0,8 lagging. Calculate: 3.2.1 The turns ratio 3.2.2 The percentage resistance 3.2.3 The percentage reactance 3.2.4 The full-load copper loss 3.2.5 The power factor at which maximum regulation occurs 3.2.6 The voltage to be applied to the primary to circulate full-load current in the secondary circuit on short circuit	Read Exercise Workbook	Board text book models Workbook	yes
Wednesday	Transformers	A $12 \mathrm{kVA}, 2$ 000/400	Read	Board text book	yes

	Calculations on load using equivalent circuit	V, 50 Hz , single-phase transformer gives the following test results: Open-circuit test: 400 V at normal frequency applied to the 400 V winding. The power input is 120 W . Short-circuit test: 25 V at normal frequency applied to the 400 V winding and full-load current circulating in the 2000 V winding. The power input is 150 W. Calculate the following: 3.2.1 The resistance, reactance and impedance referred to the secondary side 3.2.2The percentage regulation at full load and 0,8 power factor lagging 3.2.3The efficiency at full load and 0,8 power factor lagging	Exercise Workbook	models Workbook		
Week Days	Objectives	Acti	ities	Teaching Methodology	$\begin{array}{r} \text { Les } \\ \text { Com } \end{array}$	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practi cal,etc)	Yes	No
Thursday	$\begin{aligned} & \text { Tests - back to back; } \\ & \text { delta — delta; Scott } \end{aligned}$	A 500 kVA, singlephase transformer has	Read Exercise	Board text book models Workbook	yes	

Friday

> Tests - back to back; delta - delta; Scott connection; economics; harmonics; zig—zag connection; tertiary windings. Regulation

Read

Board text book models Workbook
yes
phase transformer has a voltage ratio of 3 300/660 V. The primary short circuit voltage is $358,5 \mathrm{~V}$ and the short circuit power is $3,875 \mathrm{~kW}$. The iron loss is 900 W and the power factor is 0,8 lagging.
Calculate the following:
3.2.1 The equivalent resistance and reactance referred to the primary
3.2.2 The percentage full load voltage regulation
3.2.3 The efficiency at half load
3.2.4 The maximum efficiency

Lecturer signature

Senior/HoD Signature

higher education
\& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	ALTERNATORS	5/25/2020	5/29/2020
Week Number: 4	Learning Objective / Learning Outcome : TO understand operation ALTERERNATORS Synchronous motor Induction motor		Teaching Resources/Aids Board text book models	Length of period 1hour 10min

ACTIVITIES

Week Days	Objectives	Activities	Teaching Methodology (Demonstarion,Discussion,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?	No	
Monday	AC Machines : Alternators	AC Machines : Alternators The armature of a 10 pole, star-connected, thre-phase alternator with a flux per pole of 0,04 wb has 150 slots. There are 4 conductors in each slot and the coil pitch is 0,75 of the pole pitch. If the	Read Exercise Workbook	Board text book models Workbook	yes

		alternator runs at a speed of 600 r/min and the form factor is 1,13, calculate the open-circuit line voltage.		
Tuesday	Alternators	A 750 kVA, 3 000 V, 50 Hz three-phase, star- connected alternator has an armature resistance of 0,3 ohms per phase. A certain field current produces a short-circuit current of 180 A and an open circuit terminal EMF of 1 500 V (line value). Calculate: (i) The synchronous impedance (ii) The Synchronous (eactance (iii) The full load percentage voltage regulation at a power factor of 0,8 lagging	Board text book models Workbook	yes

		A 300 kVA, 2,2 kV, four pole. 50 Hz Star- connected synchronous motor has a percentage synchronous impedance of (5 + j 45) per cent. The machine is fully loaded at 0,8 power factor leading. Calculate: The resistance The reactance The EMF to which the machine is excited The load angle in mechanical degrees		
Week Days				
Thursday			Teaching Methodology	Completed

[^0]higher education
\& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION \qquad
Tshwane South TVET College

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	POWER FACTOR	$6 / 1 / 2020$	$\mathbf{6 / 5 / 2 0 2 0}$
Week Number:	Learning Objective /Learning Outcome: TO understand POWER			
5	FACTOR IMPROVEMENT		Teaching Resources/Aids Board text book models	Length of period 1hour

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussion,Practic al,etc)	Lesson Completed
		What will the lecturer do?	What will students do?	No	
Monday	Generation and supply of ac : Power-factor correction - causes of low power factor; reasons for improvement; capacitors and synchronous motors; KVA and KVA reactive; Calculations and phasor diagrams.	A number of induction motors operate in parallel at a combined power factor of 0,7 lagging and an input of 500 kW. A synchronous motor having an input of 100 kW and at a power factor of 0,6 leading, is	Read Exercise Workbook	Board text book models Workbook	yes

		connected in parallel with the induction motors. Calculate the following: 7.2.1 The total kVA 7.2.2 The total power factor				
Tuesday	Generation and supply of ac: Power-factor correction - causes of Iow power factor; reasons for improvement; capacitors and synchronous motors; KVA and KVA reactive; Calculations and phasor diagrams.	The power factor of a 250 kW, three-phase, balanced load must be improved from 0,8 to 0,9 lagging, by connecting loss-free capacitors in star across the supply of a 2200 V, 50 Hz supply. There are 3 capacitors in series per phase. Calculate the following: 6.2.1 The total kVA rating of the capacitors 6 2.2 The capacitance of one capacitor.	Read Exercise Workbook	Board text book models Workbook	yes	
Wednesday	Generation and supply of ac: Power-factor correction - causes of low power factor; reasons for improvement; capacitors and synchronous motors; KVA and KVA reactive;	The voltage supply to a consumer is 400 V , 50 Hz , three-phase. The consumer has a lighting load of 2 kW at unity power factor and a 30 kW induction motor	Read Exercise Workbook	Board text book models Workbook	yes	

	Calculations and phasor diagrams.	operating at a power factor of 0,8 lagging. The efficiency of the motor is 85%. Calculate the following: 7.2.1 The total kVA of the load 7.2.2 The power factor of the load 7.2.3 The value of the line current to a delta-connected capacitor bank which, when connected in parallel with the load, will limit the current taken from the mains to 60 A				
Week Days	Objectives	Act	ties	Teaching Methodology	$\begin{gathered} \text { Le } \\ \text { Com } \end{gathered}$	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Thursday		A three-phase, 3 kV , 50 Hz induction motor develops 500 kW at 0,78 power factor lagging with an efficiency of 92%. A delta-connected bank of capacitors is connected in parallel with the motor to improve the power factor to 0,95 lagging. Each phase	Read Exercise Workbook	Board text book models Workbook	yes	

Friday	Two 2200 V starconnected alternators operating in parallel	Two 2200 V starconnected alternators operating in parallel, supply the following loads: 50 kW at unity power factor 400 kW at 0,9 power factor lagging 350 kW at 0,8 power factor lagging 100 kW at 0,8 power factor leading One machine supplies a current of 190 A at a power factor of 0,8 lagging. Calculate the following: 6.1 The armature current of the second machine 6.2 The power factor of the second machine 6.3 The output of the second machine in kilowatts	Read Exercise Workbook	Board text book models Workbook	yes

Lecturer signature

Senior/HoD Signature

higher education
\& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	TRANSMISSION LINES	$6 / 8 / 2020$	$\mathbf{6 / 1 2 / 2 0 2 0}$
Week Number:	Learning Objective /Learning Outcome	Teaching Resources/Aids Board text book models	Length of period 1hour 10 min	
6	: TO understand operation of transmission lines			

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Monday	Transformers : Calculations on load using equivalent circuit Measure instruments : Use, construction and operation of wattmeters; watt hours meter; power factor meter; frequency meter.	Calculate by means of the T-method, the sending end voltage, current and power factor for a long transmission line supplying a load of 40 MVA, three-phase at a power factor of 0,8 lagging and $110 \mathrm{kV}, 50$ Hz . Each conductor	Read Exercise Workbook	Board text book models Workbook	yes	

		has a resistance of 30 ohms, an inductance of 0,25 henry and a capacitance to neutral of 2 microfarads. IMPORTANT: Draw the T-method circuit diagram.				
Tuesday	Transformers Calculations on load using equivalent circuit Measure instruments : Use, construction and operation of wattmeters; watt hours meter; power factor meter; frequency meter.	Apply the π method to calculate the sending end voltage, current and power factor of a 150 km transmission line. The line delivers a three-phase load of 15 MW at a power factor of 0,8 lagging and a line voltage of 90 kV , 50 Hz . Each conductor has a resistance of 0,285 ohms/km an inductance of 1,845 $\mathrm{mH} / \mathrm{km}$ and a capacitance of $0,00863 \mathrm{uF} / \mathrm{km}$ to neutral. Note: Draw the π method diagram.	Read Exercise Workbook	Board text book models Workbook	yes	

Wednesday	Transformers Calculations on load using equivalent circuit Diagrams .diagrams connections. Cable fault's. Murray loop tests - ground fault, shortcircuit fault.	A three-phase overhead transmission line is 100 km long. The phase values of resistance, inductance and capacitance per km are 0,15 ohm, 1,2 mH and $0,0087 \mu \mathrm{~F}$ respectively. The line supplies a balanced load of 80 MW at a power factor of 0,8 lagging and at a line voltage of 132 kV at 50 Hz . Use the π method and determine the following: 1) The sending end voltage 2)The sending end current 3) The power factor on the sending end	Read Exercise Workbook	Board text book models Workbook	yes	
Week Days	Objectives	Activ	ties	Teaching Methodology	Les Comp	ted
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc) al,etc)	Yes	No
Thursday	Cable fault's. Murray loop tests - ground fault, short-circuit fault.	Use the T-method and calculate the following of a three-phase transmission line: 1 The sending current 2 The sending voltage 3 The power factor at the sending end 4 The efficiency of the line	Read Exercise Workbook	Board text book models Workbook	yes	

Lecturer signature

Senior/HoD Signature
higher education
\& training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	OVERHEAD LINE PROTECTION	$\mathbf{6 / 1 5 / 2 0 2 0}$	$\mathbf{6 / 1 9 / 2 0 2 0}$
Week Number:	Learning Objective /Learning Outcome		Teaching Resources/Aids Board text book models	Length of period 1 hour 10 min

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Monday	Transformers : Calculations on load using equivalent circuit Switchgear and protective devices : Induction disc relays. Current and voltage break capacities of contactors. Re-verse phase relay. High voltage and current circuit breakers.	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V, single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum efficiency is $95,6 \%$ at a power factor of 0,8 lagging. Calculate the following:	Read Exercise Workbook	Board text book models Workbook	yes	

		3.2.1 The iron losses 3.2.2 The full-load copper losses 3.2.3 The full-load efficiency at 0,8 power factor lagging 3.2.4 The full-load voltage regulation at unity power factor				
Tuesday	Transformers Calculations on load using equivalent circuit Switchgear and protective devices : Induction disc relays. Current and voltage break capacities of contactors. Re-verse phase relay. High voltage and current circuit breakers.	The impedance that refers to the primary of a $250 \mathrm{kVA}, 6000 / 500 \mathrm{~V}$, single- phase, 50 Hz transformer is $(0,5+j 4)$ ohms. The power factor is 0,8 lagging. Calculate: 3.2.1 The turns ratio 3.2.2 The percentage resistance 3.2.3 The percentage reactance 3.2.4 The full-load copper loss 3.2.5 The power factor at which maximum regulation occurs 3.2.6 The voltage to be applied to the primary to circulate full-load current in the secondary circuit on short circuit	Read Exercise Workbook	Board text book models Workbook	yes	
Wednesday	Transformers Calculations on load using equivalent circuit Switchgear and protective devices : Induction disc relays. Current and voltage	A 12 kVA, 2 000/400 V, 50 Hz , single-phase transformer gives the following test results: Open-circuit test: 400 V at normal frequency applied to the 400 V	Read Exercise Workbook	Board text book models Workbook	yes	

	break capacities of contactors. Re-verse phase relay. High voltage and current circuit breakers.	winding. The power input is 120 W . Short-circuit test: 25 V at normal frequency applied to the 400 V winding and full-load current circulating in the 2000 V winding. The power input is 150 W . Calculate the following: 3.2.1 The resistance, reactance and impedance referred to the secondary side 3.2.2The percentage regulation at full load and 0,8 power factor lagging 3.2.3The efficiency at full load and 0,8 power factor lagging				
Week Days	Objective	Activi	ties	Teaching Methodology	$\begin{array}{r} \mathrm{Le} \\ \mathrm{Com} \end{array}$	
		What will the lecturer do?	What will students do?	(Demonstarion,Discussions,Practic al,etc)	Yes	No
Thursday	Tests — back to back; delta - delta; Scott connection; economics; harmonics; zig-zag connection; tertiary windings. Regulation Fault calculations to determine switchgear fault capacities. KVA rating of reactors to reduce fault current+ levels.	A 500 kVA, single-phase transformer has an iron loss of $2,9 \mathrm{~kW}$. PRIMARY SECONDARY 6600V 400 V 420 milliohms 1,1 milliohms For a load power factor of 0,8 lagging, calculate the following:	Read Exercise Workbook	Board text book models Workbook	yes	

		3.2.1 Full load efficiency 3.2.2 Efficiency at half- load 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency				
Friday	Tests - back to back; delta - delta; Scott connection; economics; harmonics; zig-zag connection; tertiary windings. Regulation Fault calculations to determine switchgear fault capacities. KVA rating of reactors to reduce fault current+ levels.	A 165 kVA single-phase transformer has a voltage ratio of 3 300/660 V. The primary short circuit voltage is 358,5 V and the short circuit power is 3,875 kW . The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the following: 3.2.1 The equivalent resistance and reactance referred to the primary 3.2.2 The percentage full load voltage regulation 3.2.3 The efficiency at half load 3.2.4 The maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes	

Lecturer signature

Senior/HoD Signature

higher education
\& training
Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS:

\qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	CABLE FAULTS	$\mathbf{6 / 2 2 / 2 0 2 0}$	$\mathbf{6 / 2 6 / 2 0 2 0}$
Week Number:	: TO understand Analogue to digital conversion. Digital to analogue conversion.	Teaching Resources/Aids Board text book models	Length of period 1hour 10 min	

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Monday	Static control : Analogue to digital conversion. Digital to analogue conversion.	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V , single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum efficiency is 95,6 \% at	Read Exercise Workbook	Board text book models Workbook	yes	

		a power factor of 0,8 lagging. Calculate the following: 3.2.1 The iron losses 3.2.2 The full-load copper losses 3.2.3 The full-load efficiency at 0,8 power factor lagging 3.2.4 The full-load voltage regulation at unity power factor			
Tuesday	Static control: Analogue to digital conversion. Digital to analogue conversion.	The impedance that refers to the primary of a 250 kVA, $6000 / 500$ V, single- phase, 50 Hz transformer is (0,5 + j4) ohms. The power factor is 0,8 lagging. Calculate: 3.2.1 The turns ratio 3.2.2 The percentage resistance 3.2.3 The percentage reactance 3.2.4 The full-load copper loss 3.2.5 The power factor at which maximum regulation occurs 3.2.6 The voltage to be applied to the primary to circulate full-load current in the secondary circuit on short circuit	Read Exercise Workbook	Board text book models Workbook	yes

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Thursday	RC network phase control. Phase control of armature voltage of dc motors.	A 500 kVA, singlephase transformer has an iron loss of $2,9 \mathrm{~kW}$. PRIMARY SECONDARY 6600V 400 V 420 milliohms 1,1 milliohms For a load power factor of 0,8 lagging, calculate the following: 3.2.1 Full load efficiency 3.2.2 Efficiency at halfload 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes	
Friday	RC network phase control. Phase control of armature voltage of dc motors.	A 165 kVA singlephase transformer has a voltage ratio of 3 $300 / 660 \mathrm{~V}$. The primary short circuit voltage is $358,5 \mathrm{~V}$ and the short circuit power is $3,875 \mathrm{~kW}$. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the	Read Exercise Workbook	Board text book models Workbook	yes	

Lecturer signature

Senior/HoD Signature
higher education
\& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	CABLE FAULTS	$\mathbf{6 / 2 9 / 2 0 2 0}$	$\mathbf{7 / 3 / 2 0 2 0}$
Week Number:	Learning Objective /Learning Outcome : TO understand operation of cable faults, Static control : Analogue to digital conversion. Digital to analogue conversion.		Teaching Resources/Aids Board text book models	Length of period 1hour 10min

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussion,Practic ale,tc)	Lesson Completed
		What will the lecturer do?	What will students do?	No	
Monday	Static control : Analogue to digital conversion. Digital to analogue conversion.	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V, single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum	Read Exercise Workbook	Board text book models Workbook	yes

		efficiency is 95,6 \% at a power factor of 0,8 lagging. Calculate the following: 3.2.1 The iron losses 3.2.2 The full-load copper losses 3.2.3 The full-load efficiency at 0,8 power factor lagging 3.2.4 The full-load voltage regulation at unity power factor				
Tuesday	Static control : Analogue to digital conversion. Digital to analogue conversion.	The impedance that refers to the primary of a 250 kVA, 6 000/500 V, single- phase, 50 Hz transformer is ($0,5+$ j4) ohms. The power factor is 0,8 lagging. Calculate: 3.2.1 The turns ratio 3.2.2 The percentage resistance 3.2.3 The percentage reactance 3.2.4 The full-load copper loss 3.2.5 The power factor at which maximum regulation occurs 3.2.6 The voltage to be applied to the primary to circulate full-load current in the secondary circuit on short circuit	Read Exercise Workbook	Board text book models Workbook	yes	

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Thursday	RC network phase control. Phase control of armature voltage of dc motors.	A 500 kVA, singlephase transformer has an iron loss of $2,9 \mathrm{~kW}$. PRIMARY SECONDARY 6600V 400 V 420 milliohms 1,1 milliohms For a load power factor of 0,8 lagging, calculate the following: 3.2.1 Full load efficiency 3.2.2 Efficiency at halfload 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes	
Friday	RC network phase control. Phase control of armature voltage of dc motors.	A 165 kVA singlephase transformer has a voltage ratio of 3 $300 / 660 \mathrm{~V}$. The primary short circuit voltage is $358,5 \mathrm{~V}$ and the short circuit power is $3,875 \mathrm{~kW}$. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the	Read Exercise Workbook	Board text book models Workbook	yes	

Lecturer signature

Senior/HoD Signature
higher education
\& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

LESSON PLAN

CAMPUS: \qquad CENTURION \qquad

Lecture's Name	Subject	Topic	Date From	Date To
KOEN	ELECTRO	CABLE FAULTS	$\mathbf{7 / 6 / 2 0 2 0}$	$\mathbf{7 / 1 0 / 2 0 2 0}$
Week Number:	L TO understand operation of cable faults, Static control : Analogue to digital conversion. Digital to analogue conversion.	Teaching Resources/Aids Board text book models	Lenggth of period 10	

ACTIVITIES

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Monday	Static control : Analogue to digital conversion. Digital to analogue conversion.	Transformers : Calculations on load using equivalent circuit A 400 kVA, 6 600/500 V , single-phase transformer has its maximum efficiency at 0,75 of full-load current. The maximum efficiency is $95,6 \%$ at	Read Exercise Workbook	Board text book models Workbook	yes	

		a power factor of 0,8 lagging. Calculate the following: 3.2.1 The iron losses 3.2.2 The full-load copper losses 3.2.3 The full-load efficiency at 0,8 power factor lagging 3.2.4 The full-load voltage regulation at unity power factor			
Tuesday	Static control: Analogue to digital conversion. Digital to analogue conversion.	The impedance that refers to the primary of a 250 kVA, $6000 / 500$ V, single- phase, 50 Hz transformer is (0,5 + j4) ohms. The power factor is 0,8 lagging. Calculate: 3.2.1 The turns ratio 3.2.2 The percentage resistance 3.2.3 The percentage reactance 3.2.4 The full-load copper loss 3.2.5 The power factor at which maximum regulation occurs 3.2.6 The voltage to be applied to the primary to circulate full-load current in the secondary circuit on short circuit	Read Exercise Workbook	Board text book models Workbook	yes

Week Days	Objectives	Activities		Teaching Methodology (Demonstarion,Discussions,Practic al,etc)	Lesson Completed	
		What will the lecturer do?	What will students do?		Yes	No
Thursday	RC network phase control. Phase control of armature voltage of dc motors.	A 500 kVA, singlephase transformer has an iron loss of $2,9 \mathrm{~kW}$. PRIMARY SECONDARY 6600V 400 V 420 milliohms 1,1 milliohms For a load power factor of 0,8 lagging, calculate the following: 3.2.1 Full load efficiency 3.2.2 Efficiency at halfload 3.2.3 Maximum efficiency 3.2.4 Output at maximum efficiency	Read Exercise Workbook	Board text book models Workbook	yes	
Friday	RC network phase control. Phase control of armature voltage of dc motors.	A 165 kVA singlephase transformer has a voltage ratio of 3 $300 / 660 \mathrm{~V}$. The primary short circuit voltage is $358,5 \mathrm{~V}$ and the short circuit power is $3,875 \mathrm{~kW}$. The iron loss is 900 W and the power factor is 0,8 lagging. Calculate the	Read Exercise Workbook	Board text book models Workbook	yes	

Lecturer signature

Senior/HoD Signature

[^0]: Lecturer signature

